Canny 边缘检测
目标
在本章中,我们将了解
- Canny 边缘检测的概念
- OpenCV 的功能: cv.Canny()
理论
Canny 边缘检测是一种流行的边缘检测算法。它是由 John F. Canny 在 1986 年提出。
-
这是一个多阶段算法,我们将介绍算法的每一个步骤。
-
降噪
由于边缘检测易受图像中的噪声影响,因此第一步是使用 5x5 高斯滤波器去除图像中的噪声。我们在前面的章节中已经介绍到了这一点。
-
寻找图像的强度梯度
然后在水平和垂直方向上用 Sobel 内核对平滑后的图像进行滤波,以获得水平方向()和垂直方向()的一阶导数。从这两个图像中,我们可以找到每个像素的边缘梯度和方向,如下所示:
\[ Edge\_Gradient \; (G) = \sqrt{G_x^2 + G_y^2} \\ Angle \; (\theta) = \tan^{-1} \bigg(\frac{G_y}{G_x}\bigg) \]渐变方向始终垂直于边缘。它被四舍五入到表示垂直,水平和两个对角线方向的四个角度中的一个。
-
非最大抑制
在获得梯度幅度和方向之后,完成图像的全扫描以去除可能不构成边缘的任何不需要的像素。为此,在每个像素处,检查像素是否是其在梯度方向上的邻域中的局部最大值。检查下图:
A 点位于边缘(垂直方向)。渐变方向与边缘垂直。 B 点和 C 点处于梯度方向。因此,用点 B 和 C 检查点 A,看它是否形成局部最大值。如果是这样,则考虑下一阶段,否则,它被抑制(归零)。
简而言之,您得到的结果是具有“细边”的二进制图像。
-
滞后阈值
这个阶段决定哪些边缘都是边缘,哪些边缘不是边缘。为此,我们需要两个阈值,minVal 和 maxVal。强度梯度大于 maxVal 的任何边缘肯定是边缘,而 minVal 以下的边缘肯定是非边缘,因此被丢弃。位于这两个阈值之间的人是基于其连通性的分类边缘或非边缘。如果它们连接到“可靠边缘”像素,则它们被视为边缘的一部分。否则,他们也被丢弃。见下图:
边缘 A 高于 maxVal,因此被视为“确定边缘”。虽然边 C 低于 maxVal,但它连接到边 A,因此也被视为有效边,我们得到完整的曲线。但是边缘 B 虽然高于 minVal 并且与边缘 C 的区域相同,但它没有连接到任何“可靠边缘”,因此被丢弃。因此,我们必须相应地选择 minVal 和 maxVal 才能获得正确的结果。
在假设边是长线的情况下,该阶段也消除了小像素噪声。
所以我们最终得到的是图像中的强边缘。
OpenCV 中的 Canny 边缘检测
OpenCV 将以上所有内容放在单个函数中, cv.Canny() 。我们将看到如何使用它。第一个参数是我们的输入图像。第二个和第三个参数分别是我们的 minVal 和 maxVal。第三个参数是 aperture_size。它是用于查找图像渐变的 Sobel 内核的大小。默认情况下,它是 3.最后一个参数是 L2gradient,它指定用于查找梯度幅度的等式。如果它是 True,它使用上面提到的更准确的等式,否则它使用这个函数: $$ Edge_Gradient \; (G) = |G_x| + |G_y| $$ 默认情况下,它为 False。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
edges = cv.Canny(img,100,200)
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
plt.show()
结果如图所示:
其他资源
- 维基百科的 Canny 边缘探测器
- Canny 边缘检测教程,作者 Bill Green,2002 年。
练习
- 编写一个小应用程序来查找 Canny 边缘检测,其阈值可以使用两个轨道栏进行更改。这样,您就可以了解阈值的影响。